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A noise generation mechanism for a nearly ideally expanded supersonic jet is 
proposed. It is suggested that the dominant part of the noise of a supersonic jet is 
generated at two rather localized regions of the jet. These regions are located at 
distances quite far downstream of the nozzle exit. Large-scale instabilities of the 
jet flow are believed to be responsible for transferring the kinetic energy of the 
jet into noise radiation. An analysis based on a simple mathematical model 
reveals that two large-scale unstable waves are preferentially amplified in a 
supersonic jet. The rapid growth of these waves causes the oscillations of the jet 
to penetrate the mixing layer at two locations and to interact strongly with the 
ambient fluid there. This gives rise to intense noise radiation. Theoretical results 
based on the proposed noise generation mechanism are found to compare 
favourably with experimental measurements. A simple scaling formula is also 
derived. 

1. Introduction 
Lighthill’s aerodynamic noise theory (1952, 1954) and subsequent extensions 

developed by others, for example, Ribner (1964) and references thereof on sub- 
sonic jets, have provided a good deal of understanding on jet noise generation 
over the years. Lighthill’s original idea was that turbulence in the highly sheared 
regions close to the nozzle exit of a subsonic jet is the dominant noise generation 
mechanism. With this physical insight he was able to deduce by reformulating 
the flow equations into an acoustic wave equation with source terms that the 
total power of noise radiated from a subsonic jet varies as the eighth power of the 
jet velocity. This simple scaling formula has since been confirmed experimentally 
(see Lighthill 1963) over a wide range of jet velocities. Unfortunately, as the jet 
velocity increases above the speed of sound the U8 law becomes inapplicable, 
indicating that some other noise generated mechanisms may become effective at  
high jet velocity. To account for the discrepancy Ffowcs Williams (1963) extended 
Lighthill’s theory to high-speed jets. The mathematical theory developed by him 
revealed that for a high-speed jet the radiated noise was in the form of eddy Mach 
waves. Earlier, Phillips (1960), on starting from a different reformulation of the 
flow equations, had proposed the eddy Mach wave concept when considering the 
noise produced from a supersonic free shear layer. A precise physical picture of 
eddy Mach wave radiation has never been given by Phillips or Ffowcs Williams, 
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yet many authors have associated the Mach waves with the analogy of supersonic 
flow over a wavy wall, e.g. Ribner (1969). Acoustic waves from a supersonic jet 
which have the general features of Mach waves have been identified experi- 
mentally, but so far there is no concrete evidence that they are indeed generated 
by turbulent eddies. Moreover, as far as the dominant part of supersonic jet 
noise is concerned, recent far and near field measurements (see Potter 1968; 
Ollerhead 1967; Yu & Dosanjh 1971) are found to be totally inconsistent with the 
idea that they are produced by eddy Mach waves. There is a strong indication 
that some other noise generation mechanism is responsible for the noise (dominant 
part) of a supersonic jet. 

In  the flow field of a supersonic jet the most highly sheared region is the mixing 
layer on the outer part of the jet immediately downstream of the nozzle exit. 
Hence this would be the place most favourable for the production of turbulent 
eddies. Also the eddy convection velocity will be higher here (a favourable 
condition for the emission of eddy Mach waves) than in other parts of the jet. If 
eddy Mach waves are the dominant sources of noise it is natural to expect most 
of the noise to come from this region. That is to say, if eddy Mach waves were the 
dominant noise generation mechanism, the dominant noise sources of a super- 
sonic jet are likely to be located quite close to the nozzle exit. 

In  recent years a good deal of effort has been spent by various authors, for 
example, Ollerhead (1966), Lowson & Ollerhead (1968), Dosanjh & Yu (1968) in 
the search for eddy Mach waves experimentally using optical means. As yet, no 
concrete positive statement can be made. Shadowgraphs of supersonic jets 
taken by these authors and others and schlieren photographs taken by Eggers 
(1966), Jones (1971) and others show that immediately downstream of the nozzle 
exit certain waves can be observed which may be interpreted as Mach waves. 
Actually there are two distinct sets of waves which appear to  have parallel wave 
fronts on shadowgraphs and schlieren pictures. Shadowgraphs tend to show the 
high-frequency waves more eminently. These waves are emitted from the shear 
layer very close to the nozzle exit not exceeding a few jet diameters in extent. 
They have been studied by the present author (Tam 1971) and have been shown 
to be the direct result of shear layer instability. The lower-frequency waves do 
not seem to appear very prominently in shadowgraphs (although they can still be 
identified in good quality shadowgraphic pictures) but can readily be seen in 
schlieren photographs. These waves originate from the edge of the core of the 
supersonic jet starting from the nozzle exit to as far as 8 to 10 jet diameters 
downstream depending on the Mach number of the jeti. Even though these waves 
possess many salient features that are expected of eddy Mach waves such an 
interpretation is not without difficulties. First of all, if the angle between the 
parallel wave fronts and the jet axis is used to estimate the eddy convection 
velocity an unexpectedly high value of - 0.75 times the mean jet exit speed or 
higher is found whereas a value much closer to 0.5 is anticipated. Second, the 
wave fronts form almost parallel straight lines indicating that the eddies are 
convected at more or less a single speed. It is hard to conceive why only eddies 
moving at  this particular velocity would radiate sound waves. Third, on the 
schlieren pictures the wave fronts are exceedingly ordered and coherent. To 
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produce such waves a turbulent eddy must start t o  radiate continuously im- 
mediately after it is formed near the nozzle exit until it has travelled to a distance 
of 8-10 jet diameters downstream. From boundary-layer and related works one 
would expect an eddy to become uncorrelated after it has travelled a distance of, 
say, six times its own size (or characteristic thickness of the boundary or mixing 
layer). Therefore, to be able to produce such an ordered and coherent wave pat- 
tern as is observed, the turbulent eddies must have an extraordinarily long 
lifetime. 

Whether the observed waves are indeed Mach waves or not is irrelevant as far 
as the dominant part of the noise of a supersonic jet is concerned. Far and near 
field noise measurements by Yu & Dosanjh (1971), Potter (1968) and others show 
that the frequencies of these waves observed optically are very much higher than 
the dominant noise frequencies obtained by microphone measurements. In  fact 
this high frequency noise does not even make any significant contribution to the 
total power of noise radiated. In  addition, the location of dominant noise sources 
has been found not to be near the nozzle exit of a supersonic jet as would be 
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FIGURE 1. Contours of near field sound pressure level of a 
supersonic jet (M,  = 1.5), data from Yu & Dosanjh. 

expected of Mach wave radiation but much farther downstream. Figure 1 shows 
the overall sound pressure contours of a nearly ideally expanded cold supersonic 
jet of Mach number 1-5 measured by Yu & Dosanjh (see also figure 8 of Mull & 
Erickson (1957)). If one extrapolates back from the far field noise contours 
(broken lines in figure 1) it is easy to see that there are two strong but localized 
noise sources both of which are located more than 6 jet diameters downstream. 
Also Mayes, Lanford & Hubbard (1959) have carried out some extensive noise 
measurements on rocket engines. Figure 2 shows contours of equal noise intensity 
of a small rocket measured by them. It suggests strongly that most of the noise is 
produced by a powerful localized noise source situated at  about 20 exit diameters 
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downstream. Potter (1968) realized the disagreement between Mach wave theory 
and earlier noise measurements and carried out a series of experiments to locate 
the acoustic sources in a high-speed jet using a reverberation chamber. A Mach 
2.5 shock-free cold nitrogen jet was employed in his study. His results agree with 
other experimental measurements and indicate a dominant noise source located 
at  round 20 jet diameters downstream. 
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FIGURE 2. Contours of near field sound pressure level for a 
small rocket, data from Mayes, Lanford & Hubbard. 
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The disagreement between Mach wave theory and experiment is perhaps far too 
great for possible reconciliation, Now let us examine existing supersonic jet noise 
data in some detail and try to  draw some general conclusions as to the distribution 
of noise sources and the shape of noise power spectrum with which any other 
proposed supersonic jet noise theory must be consistent. With regard to this we 
will limit our present effort and also all the subsequent considerations in this 
paper to jets which are operated a t  nearly shock-free conditions. This helps t o  
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FIGURE 4. + octave band sound pressure contours of a supersonic jet 
( M ,  = 1.5). Centre frequency = 10 kHz, data from Yu & Dosanjh. 
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FIGURE 5 .  + octave band sound pressure contours of a supersonic jet 
( M j  = 1.5). Centre frequency = 20 kHz, data from Yu & Dosanjh. 
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remove the great complication of shock generated noise that arises when strong 
shocks are present in the jet flow. It is evident that noise comes from a good part 
of the flow field of a supersonic jet even though some of this noise might not 
contribute in any significant way to the overall jet noise power. The general 
distribution of these apparent noise sources in terms of frequencies can be inferred 
approximately from near field noise measurements for supersonic jets. Figure 3 is 
aplot of the Strouhal number of these noise sources as a function of distance down- 
stream of the nozzle exit given by Yu & Dosanjh (1971). This figure shows quali- 
tatively that close to the nozzle the jet emits predominantly high frequency noise 
while most of the low frequency noise comes from parts of the jet much farther 
downstream. This general feature of frequency distribution is in good agreement 
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FIGURE 6. + octave band sound pressure contours of a supersonic jet 
(N,  = 1.5). Centre frequency = 50 kHz, data from Yu & Dosanjh. 
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FIGURE 7. + octave band power spectrum (N, = 2.23), data from Dosanjh & Yu, + octave 
band power level db re watt. 
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with the hdings of Mull & Erickson (1957) using a much higher Mach number 
jet (pressure ratio equal to 30). Apart from this general frequency distribution 
pattern, near and far field noise measurements of various authors do indicate that 
a large fraction of the total noise power comes from one or two highly localized 
parts of the jet. The work of Yu & Dosanjh (1971) and Mull & Erickson (1957) 
suggests unambiguously that two such powerful sources exist, see figure 1. 
Figures 4,5 and 6 are noise data taken by Yu & Dosanj h. A similar series of figures 
can also be found in the work of Mull & Erickson. In  these figures Q octave band 
sound pressure contours at  centre frequencies of 10,20 and 50 kHz are displayed. 
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FIGURE 8. Power spectrum of a supersonic jet (Mi = 1.5), data from Yu & Dosanjh, 
power/cycle db re 10-18 watt. 

Frequency 

FIGURE 9. General features of the power spectrum of a shock-free supersonic jet. 

These figures point out that of the two powerful noise sources the one closer to 
the nozzle radiates mostly high frequency noise and is much weaker in the total 
power of noise radiated. It is our belief that because of these disparities in noise 
source strength and frequencies many other experimenters failed to identify the 
localized high frequency noise source. Clues on the existence of two powerful 
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noise sources ih an almost shock-free supersonic jet can also be found from the 
total noise power spectrum. Figure 7 is a 4 octave band power spectrum of a 
slightly under-expanded supersonic jet obtained by Dosanjh & Yu (1968). Two 
distinct peaks are exhibited. They strongly imply that there are two strong noise 
sources which emit noise predominantly at  two rather narrow bands of frequen- 
cies. Of course, the power spectrum (power per cycle) and not the + octave band 
power spectrum is the proper physically meaningful entity. On converting to 
power per cycle the minor peak of figure 7 becomes less distinct. The data points 
are too far apart to tell whether a minor local peak still exists. In  any case a 
definite bulge (see figure 9) in the power spectrum is unmistakably present. A 
similar bulge can also be noticed in figure 8 which is the power spectrum of the 
noise of the jet studied by Yu & Dosanjh. Figure 9 is a sketch of the noise power 
spectrum of an almost shock-free supersonic jet based on experimental measure- 
ments of various authors mentioned above. It shows that such a power spectrum 
is dominated by a peak with a small bulge or possibly a local peak at a higher 
frequency. In  the low frequency range, the power spectral density p f  seems to 
follow a simple scaling formula of pfxf2. However, there is not enough experi- 
mental data available to establish the behaviour of the power spectral density 
above the frequency of the bulge. 

In  this paper a noise generation mechanism for a nearly ideally expanded 
supersonic jet based on the concept of large-scale instabilities of the jet flow is 
proposed. It will be shown that the results predicted by the present theory are 
consistent with experimental observations described above. In  0 2 a physical 
picture of the proposed noise generation mechanism is described. The necessary 
mathematical details concerning the present proposal are developed in $0 3, 4 
and 5. A theoretical formula for the frequency corresponding to the peakvalue of 
the power spectrum of the radiated noise from a supersonic jet is given in 8 6. Com- 
parisons between some quantitative predictions of the present paper and existing 
available experimental data are made in 8 7 .  In  0 8 a simple scaling formula which 
is the natural consequences of the proposed mechanism is derived on physical 
grounds. The effect of jet temperature on the dominant frequencies of jet noise 
and the noise of underexpanded and overexpanded supersonic jets are briefly 
discussed in the final section of this paper. 

2. A proposed mechanism 
Unsteadiness in the flow field of a jet is, perhaps, one of the most effective ways 

by which noise can be generated. Unsteadiness can be caused in a variety of 
ways, by, for example, turbulent mixing at  the jet boundary, turbulence con- 
vected out of the jet nozzle or it can also be generated by intrinsic hydrodynamic 
instabilities of the flow field. Theoretical investigations (Lessen, Fox & Zien 
1965; Gill & Drazin 1965; Michalke 1965; Berman & Pfowcs Williams 1970; Tam 
1971 and others) have shown that the flow of a jet is highly unstable. Near the 
nozzle exit the mixing layer is thin and a host of instabilities with relatively short 
wavelength can occur. This type of shear layer instabilities has wavelengths 
scaled according to the mixing-layer thickness. These short-wave instabilities 
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principally involve the jet fluid in the mixing layer and hence contain only a small 
fraction of the kinetic energy of the jet. They are rather mild and are not strong 
enough to disrupt the main jet flow. On the other hand, a supersonic jet is also 
subjected to large-scale long-wave instabilities with scale length equal to the 
diameter of the jet. When large-scale instability takes place all the fluid in the jet 
from inside the jet core to the mixing layer participates. Therefore these in- 
stabilities are rather violent as a sizeable fraction of the kinetic energy of the jet 
could be transformed into unsteady motion in their presence. Also they often 
lead to a rapid destruction of the jet itself. 

FIGURE 11. Sketch of large-scale spiral-mode instability of a 
nearly ideally expanded supersonic jet. 

In  this paper we proposed that most of the noise from a nearly ideally expanded 
supersonic jet is generated by the interaction of large-scale instabilities in the 
jet flow and the ambient fluid. For subsonic jets a similar idea related to large- 
scale puffs has been explored by Crow & Champagne (1970). The existence of 
large-scale instabilities in supersonic jets can easily be seen in shadowgraphs 
obtained by various authors, for example, Ollerhead (1967), Lowson & Oller- 
head (1968), Potter (1968), even though the significance of these instabilities has 
not been noticed before. Figure 10 (plate 1) (see also sketch on figure 11) is a 
shadowgraph of a cold supersonic nitrogen jet of Mach number 2.53 taken at  the 
M.I.T. Gas Turbine Laboratory. In  this shadowgraph large-scale oscillations of 
the supersonic jet core can easily be seen. A systematic study of all available 
shadowgraphs suggests that these large-scale instabilities have a spiral-mode 
geometry. Accordingly, in our proposed model below, large-scale instabilities 
will be regarded as belonging to the spiral-mode family. (In a study on choked jet 
noise Westley & Woolley (1968) reported the observations of large-scale spiral- 
mode jet oscillations.) 

A theoretical investigation of large-scale spiral-mode instability of a supersonic 
jet reveals that a spectrum of such unstable waves exist (some pertinent mathe- 
matical details will be given in 3 4). Shadowgraphic observations, however, seem 
to indicate that not all these waves are excited. In  $5 it will be shown that in a 
supersonic jet there is a natural selection mechanism which tends to amplify 
only two of all these waves. This selection mechanism is provided by the large- 
scale periodic flow structure of the jet immediately downstream of the nozzle 
exit. 

It is known (see Pack 1950; Love et al. 1959) that downstream of the nozzle 
exit of a nearly ideally expanded supersonic jet, the jet flow develops into a series 
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of almost periodic cell-like structures. The wave-number ko of these cells is 
approximately given by the following formula first derived by Prandtl(l904) 

k, = 2/3,/D(Mjz - 1)+, 

where is the first zero of the zeroth-order Bessel function (PI = 2.40483); D is 
the diameter of the ideally expanded jet and M5 is the Mach number of the jet. As 
the fluid of the jet emerges from the nozzle it inevitably carries with it distur- 
bances of various wavelengths. When these disturbances are convected through 
the periodic flow structure of the jet two waves will experience periodic resonant 
excitation (a mathematical description of this process will be given in $5) .  If k, 
and k, are the wave-numbers of these two waves, they are identified by the 
property that k, - k, = k,. Physically, this periodic resonant excitation process is 
analogous to the transverse oscillation of an elastic string excited by periodic 
axial displacement of one of its ends (see Carrier 1970). Mathematically, it is 
analogous to a dynamical system described by the Mathieu equation. These two 
excited waves grow in amplitude on propagating downstream and eventually 
cause large-scale spiral-mode instabilities of the jet with the axial wave-numbers 
of the spiral-mode unstable waves equal to k, and k,. That is to say, the axial 
wavelengths of the spiral-mode unstable waves are the same as those of the two 
waves excited by periodic resonance. 

Of the two selectively excited spiral-mode unstable waves the one having a 
larger wave-number, k,, has a shorter wavelength and a higher frequency. Also 
as will be shown in $4 it has a higher spatial growth rate than the other (long) 
wave. Thus the amplitude of this high frequency unstable wave will grow much 
faster than that of the low frequency wave. As a result, it will interact strongly 
with the ambient fluid on penetrating the mixing layer surrounding the jet at  a 
locationmuch closer to thenozzle exitthan the lower frequencywave would. Being 
a short wave it involves only a very small fraction of the kinetic energy of the jet 
(mainly that of the fluid on the outer part of the jet) and hence its interaction 
with ambient fluid is relatively mild. The result of the interaction is a rapid disin- 
tegration of the unstable wave coupled with a thickening of the mixing layer and 
the emission of noise with a predominant frequency equal to the oscillation 
frequency of the unstable wave. In  this way the high frequency unstable wave is 
responsible for the formation of a strong but localized noise source in the super- 
sonic jet. Downstream from this high frequency noise source only the long wave 
remains. The oscillatory motion of the jet associated with this wave is shielded 
from the ambient fluid by the mixing layer, now thickened by the disintegration 
of the high frequency wave. Farther downstream the rapid growth in amplitude 
of the unstable long wave will finally allow it to penetrate the mixing layer and 
interact strongly with the ambient fluid to form a powerful low frequency noise 
source. As a good fraction of the jet energy is involved in this wave its destruction 
after interacting with the ambient fluid marks the beginning of the disintegration 
of the jet as an organized entity. 

The above physical process explains the formation of two strong but localized 
noise sources in a nearly ideally expanded supersonic jet. It also implies that the 
frequencies corresponding to the peak and bulge (possibly a local peak) of the 
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jet noise power spectrum (figure 9) are equal to the frequencies of the spiral-mode 
unstable waves. Thus these frequencies can be predicted with good accuracy 
from first principles by hydrodynamic stability theory. Explicit expressions so 
obtained will be given in $6.  They will be used for comparison with experimental 
measurements in 9 7. 

Now let us estimate the approximate positions of the two strong noise sources 
within the framework of the model described above. In  order that the selective 
excitation mechanism of our model can be effective, the initial disturbances from 
the nozzle must travel a t  least, say, a distance of 3 cell lengths inside the jet. Too 
short a distance will not allow enough time for resonant amplification to take 
place. The subsequent development of spiral-mode instability into large ampli- 
tude oscillations requires a distance of, say, 2 or 3 wavelengths. This depends, of 
course, on the spatial growth rate of each wave which in turn depends on the 
Mach number of the jet (growth rate decreases with increase in Mach number). 
Therefore if L, and L, denote the locations of the high and low frequency noise 
sources measured from the nozzle exit, then we expect 

where A, = 2n/k, is the wavelength of cells, A, = 2n/k1 is the wavelength of the 
high frequency unstable wave and A, = 2n/k, is the wavelength of the low fie- 
quency unstable wave. In  (1) we note that the long wave has a smaller spatial 
growth rate than the short wave. Hence a slightly larger coefficient in front of 
A, than A, would be appropriate. Expression (1) will be used for qualitative 
comparison with experimental values in 8 7. 

Now let us turn to the generation mechanisms of the very high and very low 
frequency noise shown in the power spectrum of figure 9. They correspond to 
frequencies to the right of the bulge and to the left of the peak in this figure. So 
far we have ignored the non-linearities of the fluid flow. We believe that the very 
high frequency noise is emitted principally by small amplitude higher order waves 
created through non-linearities in the presence of spiral mode instabilities. The 
very low frequency noise is known to be generated downstream of the localized 
low frequency noise source. We note that in this region the long spiral-mode 
unstable wave decays at  an appreciable rate after interacting strongly with the 
ambient fluid earlier upstream. During this decaying process the rate of oscilla- 
tion is gradually being slowed down owing to the intense mixing of the jet and 
ambient fluids. At the same time the organized spiral-mode structure disappears 
slowly over a distance of a few wavelengths (see figure 10). Some residue 
kinetic energy is still contained in the slowed-down spiral oscillations. The 
continuous interaction of these slowed-down oscillations with surrounding fluid is 
responsible for the generation of lower and lower frequency noise at a much 
reduced intensity. 

A mathematical analysis of the large-scale jet instability model described above 
will be presented in the next three sections of this paper. In  3 3 the periodic flow 
structure of a nearly ideally expanded supersonic jet will be briefly examined. 
Section 4 is devoted to a study of large-scale spiral-mode jet instability with 
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spatial growth rate. In  3 5, the resonant instability mechanism by which waves of 
wave-numbers k, and k,  are selected will be described. 

3. The flow structure of a nearly ideally expanded supersonic jet 
In  this section we want to investigate the flow structure of a nearly ideally 

expanded supersonic jet. We will show in later sections that this structure plays a 
crucial role in the selective amplification of unstable waves and in the deter- 
mination of the frequency corresponding to the peak of the power spectrum of the 
noise of such a jet. The present problem is not new. It has been discussed theoreti- 
cally by Prandtl (1904), Pack (1950) and experimentally by Love et al. (1959). 
Here we will not dwell on the problem in any great length but briefly summarize 
the results that are pertinent to the development of this paper. 

Of all the dynamical effects that are relevant in determining the flow structure 
of a supersonic jet, inertia and compressibility are the most important. Viscous 
forces are relatively unimportant except in the thin mixing layer a t  the outer 
edge of the jet. Close to the nozzle exit a good first approximation is to assume 
that the jet fluid is inviscid and the mixing layer is infinitesimally thin. Let pa be 
the pressure of the stationary ambient fluid and p ,  + Ap be the static pressure of 
the supersonic jet at the nozzle exit. If Ap is zero, within the model adopted, a 
uniform jet with velocity parallel to the jet axis will be formed. If Ap is small but 
not zero we expect the jet to remain nearly uniform save for some small pertur- 
bations of the order of Ap. To find these perturbations to order Ap a linear analysis 
is adequate. 

I’ 

4 
Ambient pressure=p, 

\Pressure at nozzle 
exit =pa + Ap 

FIGURE 12. Structure of a nearly ideally expanded inviscid supersonic jet. 

be the jet velocity if the jet were ideally 
expanded to ambient pressure pa as shown in figure 12. (D is not equal to the exit 
diameter of the nozzle unless Ap is zero.) Inside the jet the perturbation equations 
are 

Let D be the diameter of the jet and 

pjv.v+ i7aplaz = 0, (2) 
pjUaviaz = -vp, (3) 

(4) I, = a? 
I P .  

These are the linearized continuity, momentum and energy equations. Here p j  
and ai denote the mean density and sound speed of the ideally expanded jet and 
v,p and p denote the perturbation velocity, pressure and density respectively. 
By eliminating v and p, the pressure perturbation is found to be given by 
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where Hj = u l a j  is the Mach number of the ideally expanded jet. The boundary 
conditions are 

r = &D when p = 0, (6) 

at z = O  
P = AP, 
v is parallel to the jet axis, 

where [ ( z )  is the radial displacement of the jet boundary as shown in figure 12. 
Conditions (6) and (7) are the dynamic and kinematic boundary conditions 
respectively and (8) and (9) are boundary conditions at  the nozzle exit which are 
responsible for causing the perturbations in the jet flow. Condition (9) is, of course, 
not in its most general form. The present form is used solely to simplify the 
calculation and is not significant in influencing the final results of this paper. 

An appropriate solution to the above equations and boundary conditions is 

P = Pula$ A, = 2APlPp JAP,), I 
where J, and J1 are the Bessel functions of order zero and one respectively and P, 
denotes the pth root of J,(pp)  = 0. 

From (10) it is clear that close to the nozzle exit an almost periodic flow struc- 
ture exists. To a good approximation the wavelength of this structure is given by 
that of the first term of the series in (10) (see Prandtl). That is to say, the wave- 
length N n(M5- l)aD/P,(P1 = 2.40483). Of course viscosity and the mixing 
process will ultimately destroy this periodic structure but this will take place 
many jet diameters downstream. 

4. Large-scale spiral-mode instability characteristics of a cold super- 
sonic jet 

In this section the spiral-mode spatial instability characteristics of a supersonic 
jet will be studied. In the past, theoretical investigations on the stability of an 
inviscid compressible jet have been carried out by many authors, for example, 
Lessen et al. (1965), Gill & Drazin (1965). However, their works are all confined to 
unstable waves with temporal growth rates. The physical problem that we are 
presently investigating involves unstable waves which grow spatially rather than 
temporally. Spatial instability characteristics (frequency and wave-number 
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relationships) of a supersonic jet do not seem to be readily available in the 
literature. The prime purpose of this present brief investigation is to obtain 
vital numerical information that is pertinent to the supersonic jet noise problem. 

In a supersonic jet the velocity inside the supersonic core is very high. Sur- 
rounding the core is a mixing layer in which the fluid velocity decreases radially 
until a negligible value is reached at  its outer edge. The mixing layer at a distance 
not too far downstream of the nozzle exit is relatively thin and dynamically 
unimportant as far as large-scale instability is concerned. In  this section we will 
adopt a simple model in which the thickness of the mixing layer is essentially 
zerot on comparison with the diameter of the jet and the wavelengths of the 
unstable waves. The velocity profile inside a real jet is to a, large extent unknown, 
even experimentally. A reasonably good approximation for our present purpose, 
perhaps, is to consider the velocity there to be constant. In  the following we will 
use the model of an uniform jet bounded by a vortex sheet as shown in figure 13 
with the understanding that it is only a first approximation to a real supersonic 
jet. 

r 
n r 

FIGURE 13. Instability of a supersonic jet bounded by a vortex sheet. 

Let us denote the pressure perturbations, the unperturbed densities, the sound 
speeds, the velocity and diameter of the jet by po,  pi ,  Po, Pi, a,, ai, and D 
respectively with subscripts o and j indicating variables outside and inside the 
jet. From the linearized equations of motion the pressure perturbations are 
found t o  be governed by the following convected wave equations. 

aap0/at2 = a:Vp,, r > +D, (11) 

If ~ ( z ,  0, t) represents the radial displacement of the vortex sheet at the outer 
boundary of the jet as shown in figure 13, then the kinematic and dynamic 
boundary conditions at the vortex sheet are 

I 
P o  = Pi 

In  addition, the finiteness condition requires that 

(14) p o + o  for finite t as r+o' r+m. I p j  remains finite as 

Dynamically it is the momentum thickness of the mixing layer which is important. 
Based on the limited data of Eggers (1966) on a 2.22 Mach number jet this is estimated t o  
be a reasonable approximation. 
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On considering solutions of (1 1) to (14) of the form p N f ( r )  ei(kz+me-wt) with 
m = 1 (spiral mode) it is straightforward to deduce that the wave-number k and 
frequency w are related by the following eigenvalue equation. 

where to = (a2- K 2 ) t ,  

Q = wD/2a0, K = +kD, 

and J1(c) is the Bessel function of order 1, Hi1)(') is the Hankel function of the first 
kind of order 1. The branch cuts for go and ti are taken to be such that I m  (to), 
Im (5) > 0. (In deriving (15) the specific heat ratios of the jet and ambient fluids 
are considered to  be equal.) 

In the present problem we are interested primarily in spatially growing in- 
stabilities. I n  recent years the theory of spatially growing unstable waves has 
been elaborated by Briggs (1964), Gaster (1963, 1965), Michalke (1965) and 
others. For the present purpose an investigation following Briggs shows that the 
instabilities are convective in the direction of the jet flow and it is sufficient to 
look for eigenvalues of (15) with w real and k complex ( k  = k, + ik i )  for spatially 
growing waves. Unstable waves propagating in the downstream direction are 
given by eigenvalues with ki < 0. 

I n  (15) there are two independent physical parameters, namely, ao/aj and ela,. 
For a cold jet in which the total temperatures of the jet and ambient fluid are the 
same these two parameters are related and the problem has only one free para- 
meter. The eigenvalues of (15) corresponding to a cold supersonic jet with the 
Mach number of the jet Mi = e/ai ,  chosen as the independent parameter have 
been obtained numerically using the facilities of the M.I.T. Computer Centre. 
Figure 14 shows a sample of the relationships between k, and w for various values 
of 1.5 < Mj < 4.0. Figure 15 gives the relationships between - ki and w for the 
same range of Mach numbers. A study of figure 14 reveals that for a fixed jet Mach 
number Mi, k, and w are almost a linear function of each other. On using a straight 
line approximation (dotted lines in figure 14) it is possible to  express the depen- 
dence of w on k, in a simple analytical form. A good fit is found numerically to be 

I $k,D = [1-046- 0*198(Mj- 1*40627)3] [~D/2a ,+  0*033M,2- 0*219Hj + 0-2071 

(cold jet, 1.5 < Mi < 4.0, spiral mode). 

(16) 
Instead of choosing Mi to be the independent parameter the ratio Via ,  can also 
be used. I n  terms of u / a ,  a good approximate relation between k, and w can be 
found in a similar manner : 

Lk 2 7  D = [1.436 - 0.361 u/a,] {wD/2ao - 0.198 + [0.00126 + 0.044( u / a ,  - 1.915)2]*}\ 

(cold jet, 1.246 < U/ao < 1.952, spiral mode). 
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By means of (16) and (17) the frequency of large-scale spiral-mode oscillation can 
be determined once the wavelength or wave-number of an unstable wave is 
selected. Figure 15 shows that as Mj increases the spatial growth rate of unstable 
waves decreases. That is to say, for a high Mach number jet it is necessary for an 
unstable wave to  propagate over a longer distance before it can acquire a suffi- 
ciently large amplitude. 

1.5 

0.5 

0 1 .Q 2.0 
wDl2a, 

FIGURE 14. Instability characteristics of a cold supersonic jet bounded by a vortex sheet 
(spiral mode). -, exact; - - -, approximation by straight lines; M,  = v/uf = Mach number 
of supersonic jet. 

5. Resonant excitation mechanism 
Now a mechanism by which two large-scale unstable waves are preferentially 

selected in a nearly ideally expanded supersonic jet as mentioned in $ 2  will be 
discussed. Inside the nozzle of the jet disturbances are continuously being 
generated. These disturbances are then convected downstream by the supersonic 
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flow. On emerging from the nozzle exit they pass through the large-scale periodic 
structure of the jet discussed in $3. I n  so doing the disturbances experience 
periodic excitation. We will show below that for disturbances of certain wave- 
lengths this periodic excitation immediately leads to resonance and hence 
exponential growth. 

wD/2a, 

FIGTJRE 15. Instability characteristics of a cold supersonic jet 
bounded by a vortex sheet (spiral mode). 

Near the nozzle exit all the disturbances generated upstream are confined with- 
in the jet. The fluid velocity is supersonic in this region and flows mainly in the 
downstream direction. As a result, disturbances propagate essentially only in the 
axial direction of the jet. That is, to a good approximation radial spreading of the 
disturbances can be neglected at least within a short distance of say 3 cell 
lengths measured from the nozzle exit. With this in mind, in the following we will 
adopt a one-dimensional mathematical model in which only the propagation of 
disturbances in the axial direction of the jet is considered so as to reduce mathe- 
matical complications. It is to be understood that farther downstream this one- 
dimensional model will no longer be valid and the unstable waves will become 
three-dimensional. 

Let us now consider how disturbances will propagate near the nozzle exit. 
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The equations of continuity, momentum and energy governing the one-dimen- 
sional flow of a perfect gas are 

where u is the velocity in the z direction and y is the specific heat ratio. 
Near the axis of the supersonic jet the periodic component of the mean flow 

field is approximately given by the first term of (10). The mean flow field can be 
written as 

p = pi + e cos kox, p = pi + (€/a!) cos koz ,  c2 = D - ( s /p j  77) cos koz,  6, N 0,  
(19) 

with k, = 2Pl/D(Jq - 1 ) 4  E = 2APlPl Jl(P1). 

The equations governing the propagation of small disturbances with a mean 
flow given by (19) can be obtained by a straightforward linearization of (18). 
Since these disturbances are propagating waves they can be expressed mathe- 
matically in the following form. 

p’ = f j ( z )  e-iwt, p’ = p^(z) e - i w t ,  u‘ = a ( z )  e-iwt. (20) 

The amplitude functions @(z) ,  p^(z),  Q(z) are to be determined €rom the linearized 
equations which are as follows. 

k 
cos k,z +A- p^sin k,z 

Pj u 
1 dp  ̂ 1 k 

pj D d x  a; 
cosk,x-~Qsink,z = 0 ,  -___ 

- i w p $ + p j U - + - + e  -dQ d@ [ --zlcosk,z+$Qsink,z 
dx d z  

(21) 

1 ur - k,Q sin k,z - - cos ku 
pj U d z  

The above system of equations (21.), resembles verymuch the Mathieu equation. 
As is well known, the Mathieu equation possesses resonant unstable solutions. We 
therefore expect this system of equations also to possess resonant unstable 
solutions. The treatment of resonant instability of the Mathieu equation has 
been given by various authors in the past. Recently, Cole (1968) gave a particu- 
larly illuminating treatment of this phenomenon by a two-variable expansion 
procedure. Here we will follow this method of Cole. According to this method a 
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slow variable z" = EZ is introduced and the functions @, j'3 and 0 are to be expanded 
in a power series of E .  

( 2 2 )  I $(z ,  E )  = B0(z, z )  + € $ , ( X ,  z )  + . . ., 
P ( Z ,  z") = po(z ,  z") +€ph, (X ,  2)  + . . ., 
a(z, E )  = ho(z, 8) + €&,(Z, z )  + . . . . 

On substituting ( 2 2 )  into (21) and on partitioning terms according to powers of 8 
we have to zeroth order 

-aho ap0 
a Z  az - iwpjao+pju-+-  = 0, (23) 

J - iw~o+yp*az+u-o - aao -a@ = 0 
ax 

and to order E 

- iwp^,+pjZ+U--'  aa, -ap = --.-O- aa U,---ocoskoz---j'30sinkoz k0 
-ape 1 aa 

ax aa ax a; az P j  u 
+ 1 %! cos koz + $ a, sin koz,  (24) pju a2 a7 

-a&, a$, -aa a$ iw k 
ax az az aa a; O U 

- iwp ih l+p j  U-+- = -pj U - ' - L + - - &  c o s k o z - ~ ~ o s i n k o z  

+ k o i 2 0 s i n k o z + ~ ~ c o s k o z  = J,. (26) 
PjU 

Let us look for propagating wave solutions of the form N eikz to the zeroth- 
order equations. A straightforward calculation gives 

Po = @o/@, 

where the wave-numbers k,  and k, are related to w by 

i7+aj i7--ai 
k , = ~ z w ,  k 2 -- - u2-aaw9 

7 7 

A(8) and B(E) are arbitrary functions of 2. 
In  introducing a slow variable z" we have implicitly assumed that the solutions 

are bounded in the fast variable z. In  order for this to be true the non-homogeneous 
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terms in (25) and (26) must satisfy certain orthogonality conditions. These 
conditions can readily be established by integration by parts. They are 

These two orthogonality conditions provide the necessary equations for the 
determination of A@)  and B(x"). By means of these equations it can easily be shown 
that A(2) and B(2) are in general well behaved. The exceptional case is when 
resonance occurs. This takes place when the following relationship is fulfilled. 

k , - k ,  = k,. 
That is, on using (28), 

k, = &k,(M,+ l ) ,  k, = @,(Mi- l), Mi = a/ai. (32) 

In  the case of resonance the orthogonality conditions become 

- dA ik0(Hi+ 1) 
( U  - a.) - + ( ( ~ + 1 ) M j - 2 y + 2 ) B  = 0, 

dz" 8piajNi 

dB - iko(J4 - 1) ( (y  + 1)M, + 2y - 2)A + 2( D + Uj) dx" = 0. 
8piaiMi 

These equations have solutions of the form A = deuz, B = f ievi  (A, Bare constants) 
with v given by 

v = & ( k0/8j5j$Mj) [ (y + 1) Mj + 27 - 214 [ ( y  + 1) Mi - 27 + 2]*. 

This means that the waves will undergo resonant instability. 

waves with wave-numbers 
To sum up, we see that because of the periodic structure of the jet flow two 

(pl = 2.4048) (34) 

will be selectively amplified by resonant excitation. These are the waves which 
are responsible for triggering large-scale spiral-mode instabilities in a supersonic 
jet as proposed in our physical model in fj 2. 

6. The frequency corresponding to the peak value of the power spectrum 
of radiated noise 

In  the last section we have shown that because of the periodicity of the jet 
structure near the nozzle exit resonant excitation causes the growth of waves 
with wave-numbers k,  = +ko(Ni + 1) and k,  = + k0(Ni - 1). On propagating 
downstream over a distance of 3 or 4 jet cell lengths these amplified disturbances 
will become strong enough to excite large-scale spiral-mode jet instabilities with 
the same axial wavelengths. These large-scale spiral-mode instabilities when 
effectively developed will be capable of transferring a part of the kinetic energy 
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of the jet into noise radiation by causing the jet fluid to interact with the sur- 
rounding fluid. A wave with axial wave-number k, has a shorter wavelength and 
the higher spatial growth rate (figure 15) brings about noise radiation at a higher 
frequency closer to the nozzle exit than a wave with wave-number k,. We expect 
the location of maximum noise radiation corresponding to this wave to be a t  N 3 
jet cell lengths (so that resonant excitation can be effective) plus N 2 wavelengths 
downstream of the nozzle exit. This is the distance at  which the large-scale jet 
instability will most probably be fully developed and dissipation due to mixing 
with ambient fluid is strong. A wave with axial wave-number k, has a longer wave- 
length and lower frequency. We also expect the location of maximum noise 
radiation corresponding to this wave to be at  N 3 jet cell lengths plus N 2 wave- 
lengths downstream of the nozzle exit. The short wave involves kinetic energy 
mainly on the outer part of the jet while in the oscillations of the long wave the 
whole supersonic jet participates. Therefore, when fully developed, the long-wave 
oscillations contain a substantial fraction of the kinetic energy of the jet whereas 
the short wave has only a minor fraction. As a result, the dominant noise source 
of a supersonic jet will radiate at  a frequency corresponding to the frequency of 
oscillation of the long wave, i.e. this is the frequency of the peak of the power 
spectrum of radiated noise. At the same time the oscillations of the short wave will 
probably contribute to a local peak or a bulge (see figure 9) in the same power 
spectrum. Withthe above physical picture in mind, by equating the wave-number 
of spiral-mode instability to k, (from (34) and (16)) we arrive a t  the following 
formula for the frequency f of the peak of the power spectrum of a nearly ideally 
expanded cold supersonic jet with Mach number Mi. 

whereD = diameter of jet, a. = ambient speed of sound (1.5 < Mi < 4-0, cold jet). 
If ( 17) is used instead of ( 16) we have 

"I-' Mi-1 4 ..fo = 1-202(-) [ 1.436 - 0.361 - + 0.198 
a0 Mj+ 1 a0 

- [0~00126 + 0-044(& 1*~5) ' ] '  (1.246 < "/ao G 1.952). (36) 

Also from 1%' of (34) we expect a local peak or a bulge in the power spectrum a t  
frequency f to be given by the following formula. 

7TfD Mi+l  4 
- = 1-202(-) 5.- 1 [1-406-0*198(4-  1-40627)8]-1 
a0 

- (0.0331MiZ - 0*219Mj + 0.207) (37) 

L \-0 e9i5)2]4. (38) 

In the next section we will compare the predictions of these equations with 
experiment. 
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7. Comparison with experiment 
Based on idealized physical models of the flow field of a supersonic jet we have 

in the previous sections derived a few theoretical results which we would now 
like to compare with experimental data. 

Wavelength of large-scale spiral-mode instability 

Large-scale spiral-mode instability of a cold supersonic jet operating near shock- 
free condition can be seen in shadowgraphs provided by Potter (1968) and also in 
a preliminary report by Potter & Jones under the same title. The Mach number of 
the jet is 2.49. From (34) the axial wavelength of the long unstable wave is 

For Mj = 2.49 this gives A, = 4-00. Prom the shadowgraphs of Potter and also of 
Potter & Jones we estimate that the wavelength of the observed large-scale 
oscillations to be N 40.  Figure 10 is a shadowgraph of a cold supersonic jet of 
Mj = 2.53 taken a t  the M.I.T. Gas Turbine Laboratory. The theoretical value of 
A, from (39) is 3.980. On this shadowgraph we have marked the peaks of the 
long unstable wave. It is clear that the peaks are not very sharp. Our best estimate 
gives a wavelength of N 40 which is in good agreement with theory. 

Frequency corresponding to the peak of the power spectrum of noise radiated 

Power spectra of noise radiated from cold supersonic jets have been measured by 
Yu & Dosanjh (1971)’ Potter (1968) and Dosanjh & Yu (1968). In  the works of 
Potter and Dosanjh & Yu only power spectra per Q octave bands are given. In  
order to compare with the present theory we have converted them to power 
spectra per unit cycle. Potter’s data give only one peak in the power spectrum. 
We believe that his measurements are not fine enough to show the minor peak or 
bulge at  a higher frequency. Also the dominant peak is rather flat and so in 
comparing with theory our best estimate from his data will be quoted. The work 
of Dosanjh & Yu shows two distinct peaks in the 4 octave power spectrum. On 
coverting to power per cycle the minor peak is less prominent and the main peak 
rather flat. These should be taken into consideration when comparing with 
theoretical predictions. 

(i) In  the work of P u  & Dosanjh (1971) Mi = 1.5, D = 0*408in., speed of 
sound in ambient air used in theory a, = llOOft/sec. 

At the peak: $(theoretical, equation (35)) = 6-1 kHz; !(observed) N 6 kHz. 
At the bulge: f(theoretica1, equation (37)) = 28.6 kHz; f(observed) N 25- 

(ii) In  the work of Potter (1968) Bj = 2.49, 0 = 1 in., a, = llOOft/sec. 
At the peak: $(theoretical) = 4-5 kHz; !(observed) N 3.5-5 kHz. 
(iii) In  the work of Dosanjh & Yu (1968) (slightly underexpanded jet) 

At the peak: f (theoretical) = 8.5 kHz; f(observed) N 7-9 kHz. 
At the bulge: f(theoretica1) = 20.6 kHz; f(observed) N 21-22 kHz. 

30kHz. (see figure 8). 

Bj = 2.23, D(nozz1e exit) = 0*482in., a, = llOOft/sec. 



O n  the noise of a nearly ideally expanded supersonic j e t  91 

The present investigation is not capable of providing a rigorous determination 
of the locations of the dominant localized noise sources. However, the physical 
arguments that led to (1) do not seem to be unreasonable. On using (1) to estimate 
qualitatively the locations of these noise sources it is found that they are quite 
consistent with the observations of Yu & Dosanjh (1971), Potter (1968) and Mull 
& Erickson (1957). Of course, to  locate these sources experimentalIy is in itself a 
major task and has not been done with complete certainty. Nevertheless it is 
important to  find that the proposed model is a t  least in general agreement with 
experiments. 

Useful supersonic jet noise data available in the literature are few and frag- 
mentary. The above are all that we managed to find. On comparing with theoreti- 
cal values it can be seen that there is fair agreement in general. Of course much 
more experimental evidence is needed before the present proposed theory can be 
accepted in its entirety. However, the above does seem to lend confidence in the 
physical mechanism described in § 2. 

8. A scaling formula 
It is possible to obtain a scaling formula on the total noise radiated from a super- 

sonic jet based on the present proposed mechanism of noise generation. We note 
from the experimental power spectra of supersonic jet noise that only frequencies 
in the proximity of the peak of a power spectrum contribute significantly to the 
total radiated power. At the same time we also note that according to the pro- 
posed mechanism noise radiated at  these frequencies is due to the large-scale 
oscillatory motions of the jet fluid. As the fluid in the oscillatory jet core inter- 
acts strongly with the ambient fluid intense mixing of these fluids takes place. 
The mixed fluid is highly turbulent so the range of frequencies of noise radiated 
from this turbulent fluid is rather broad even though the primary energy of 
noise comes from a single mode of jet oscillation. From this consideration we see 
that the total power radiated must be proportional to the rate a t  which the kinetic 
energy of the jet is dissipated through the interaction of the oscillatory motion of 
the jet and the surrounding fluid. The kinetic energy per unit volume of jet fluid 
which is related to the large-scale oscillatory motion is ipj (u2), where (u2) is the 
averaged square of the disturbance velocity. Therefore, if W denotes the total 
noise power radiated then 

W cc pi (u2) UD2. 

At high velocity we expect (u2) to scale like U2.  Hence we recover the 0 3  scaling 
formula, i.e. 

W cc p j  U3D2. (40) 

9. Discussion 
So far in our numerical computation in $3 4 and 6 we have restricted ourselves 

to the case of a cold supersonic jet. Of course this was done out of convenience 
rather than necessity. There is no fundamental difference in the noise generation 
mechanism between a hot and a cold jet. 
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In  order to see the significance of the jet temperature some numerical calcula- 
tions for hot jets have been made. Figures 16 and 17 show the instability charac- 
teristics of a jet with a / a ,  = 1.667 and 1.246 respectively for various values of 
a,/ag = (T@/q)&. It is clear from the curves of these figures that the numerical 
relation of I%, and w for hot jets does not differ significantly from that of the cold 

oD/2a0 

FIGURE 16. &k,D vs. wD/2a, at various jet temperatures. Uja, = 1.667, spiral mode, 
a, = speed of sound in ambient gas, a$ = speed of sound inside jet. 

jet over a wide range of temperature ratios. This means that if e / a ,  is chosen as 
one of the two parameters of the problem the k, - w relation is not sensitive to 
changes in the other parameter involving the temperature of the jet. Equations 
(36) and (38) were derived from such a relation. Thus they can be used for hot as 
well as cold jets on allowing for a possible error of N 10 %. By means of these 
equations we see that for high Mach number jets,f(peak) is almost independent of 
temperature. This seems to indicate that the power spectrum would not be much 
affected by changes in the temperature of the jet. 
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In  this paper we have examined the noise generation mechanism of nearly 
ideally expanded supersonic jets. For a moderately under-expanded or over- 
expanded jet certain modifications are necessary. First of all, the effective dia- 
meter of the jet will be quite different from the nozzle exit diameter. An es%imate 
on the effective diameter of the jet based on mass continuity is required. Second, 

a,/a,= 1-204 (cold jet, M J =  1.5) 

0 
I 

1 .o 2-0 

wD/2a, 

FIGURE 17. #,D vs. wD/2a0 at various jet temperatures. 
U/a, = 1.246, spiral mode. 

shock cells will form in the jet flow and because of this, our estimates in 93, which 
is based on linear analysis, will not be applicable without appropriate correction. 
Third, there is the possibility that the Mach number of the jet is not uniform 
even in the core of the jet owing to the presence of shocks. Thus a much better 
model of the velocity distribution across the jet is needed to estimate the insta- 
bility characteristics of the jet flow. However, we believe that our proposed 
physical noise generation mechanism remains valid. This belief is supported by 
the experimental work of Yu & Dosanjh (1971). 
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In  summary, we have proposed in the above a physical mechanism by which 
the dominant part of the noise of a nearly ideally expanded supersonic jet is 
generated. All the main features of this mechanism are found to be consistent 
with experimental observations. Theoretical predictions based on simple physical 
models of the jet flow according to  the proposed mechanism compare favourably 
with the few shadowgraphic and far and near field noise measurements available 
in the literature. It is hoped that the present work provides certain insight into 
some physical aspects of supersonic jet noise. 
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